Жизненный и научный путь
Джеймс Клерк Максвелл
Выдающийся физик, чьё наследие лежит в основе современной науки. Его работы в области электромагнетизма и создание уравнений, носящих его имя, стали революционными для классической электродинамики.

Жизненный путь


Детство и отрочество

фффффДетство учёного прошло в фамильном имении в Южной Шотландии. Вскоре после рождения сына семья переехала из Эдинбурга в заброшенное имение Миддлби, где был построен новый дом, получивший название Гленлэр («берлога в узкой лощине»).
фффффКогда Джеймсу было восемь лет, его мать тяжело заболела и вскоре умерла. Теперь единственным воспитателем мальчика стал отец, к которому он на всю жизнь сохранил чувство нежной привязанности и дружбы.
С раннего детства Максвелл проявлял интерес к окружающему миру, был окружён различными «научными игрушками» (например, «магическим диском» — предшественником кинематографа, моделью небесной сферы, волчком-«дьяволом» и др.).
фффффВ десятилетнем возрасте у Максвелла появился специально нанятый домашний учитель, однако такое обучение оказалось неэффективным, и в ноябре 1841 года он переехал к своей тёте Изабелле, сестре отца, в Эдинбург.

Интересные факты:

  1. В школьные годы ученый не знал арифметику.
  2. Пел шотландские песни аккомпанируя самому себе на гитаре.
  3. Когда издали указ об обязательном посещении богослужения Максвелл заявил: «В это время я только ложусь спать».
  4. В восемь лет легко цитировал любые стихи Книги Псалмов.

Зрелые годы

ффффф1850 год – Джеймс Максвелл, не слушая отца и не смотря на все его недовольство, отправляется в Кембридж. Сначала юноша посещал занятия в колледже святого Петра, а затем перешел в Тринити-Колледж. Преподаватели не могли нарадоваться талантливому ученику, который в своем выпуске стал вторым. После получения степени бакалавра бывшего студента пригласили в Тринити-Колледж на должность преподавателя. В этот период своей биографии Максвелл изучает геометрию, электричеству и проблему цветов.
Он женился в 1858 году на Кэтрин Мери Дьюар. Девушка была дочерью декана, возглавляющего Маришаль-Колледж, в котором ученый на тот момент работал.
фффффВ 1865 году здоровье Джеймса неожиданно для семьи стало ухудшаться. Врачи советуют больше времени проводить на свежем воздухе, в следствии чего в 1866 году вся семья переезжает в имение Гленлэр, принадлежащее Максвеллам и расположенное недалеко от Лондона. Еще через год ученый уезжает в Италию, чтобы поправить свое пошатнувшееся здоровье. В этот же год были опубликованы две книги, принадлежащие авторству исследователя «Теория тепла» и «Теория теплоты».
фффффВ 1871 году Максвеллу предлагают должность профессора в университете Кембриджа, куда они переезжают всей семьей. Спустя два года был окончен великий труд в жизни Джеймса – «Трактат по электричеству и магнетизму». Немного позже научный мир смог познакомится с книгой «Материя и движение».

Максвелл с женой

Окончание жизненного пути

фффффВ Кембридже Максвелл выполнял различные административные обязанности, являлся членом совета сената университета, был членом комиссии по реформе математического экзамена и одним из организаторов нового, естественнонаучного экзамена, избирался президентом Кембриджского философского общества (1876—1877). В это время появились первые его ученики — Джордж Кристал, Ричард Глэйзбрук (Максвелл исследовал совместно с ним распространение волн в двухосных кристаллах), Артур Шустер, Амброз Флеминг, Джон Генри Пойнтинг. Как правило, Максвелл оставлял выбор темы исследований на усмотрение учеников, но при необходимости был готов дать полезный совет. Сотрудники отмечали его простоту, сосредоточенность на своих исследованиях, способность глубоко проникать в суть проблемы, проницательность, восприимчивость к критике, отсутствие стремления к славе, но в то же время способность к утончённому сарказм.

фффффПервые симптомы болезни появились у Максвелла ещё в начале 1877 года. Постепенно у него затруднялось дыхание, стало трудно проглатывать пищу, появились боли. Весной 1879 года он с трудом читал лекции, быстро уставал. В июне вместе с женой он вернулся в Гленлэр, его состояние постоянно ухудшалось. Врачи определили диагноз — рак брюшной полости. В начале октября окончательно ослабевший Максвелл вернулся в Кембридж под присмотр известного доктора Джеймса Паджета.

фффффВскоре, 5 ноября 1879 года, учёный скончался. Гроб с телом Максвелла был перевезён в его имение, он был похоронен рядом с родителями на маленьком кладбище в деревне Партон.

Научная карьера

Ранние исследования

фффффК годам работы в Кембридже относится и первый серьёзный интерес Максвелла к проблеме электричества. Вскоре после сдачи экзамена, в феврале 1854 года, он обратился к Уильяму Томсону с просьбой порекомендовать литературу по этой тематике и порядок её чтения. В то время, когда Максвелл приступил к исследованию электричества и магнетизма, существовали два взгляда на природу электрических и магнитных эффектов. Большинство континентальных учёных, таких как Андре Мари Ампер, Франц Нейман и Вильгельм Вебер, придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами, которые мгновенно взаимодействуют на расстоянии. Электродинамика, развитая этими физиками, представляла собой оформившуюся и строгую науку. С другой стороны, Майкл Фарадей, первооткрыватель явления электромагнитной индукции, выдвинул идею силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Согласно Фарадею, силовые линии заполняют всё окружающее пространство, формируя поле, и обусловливают электрические и магнитные взаимодействия. Максвелл не мог принять концепцию действия на расстоянии, она противоречила его физической интуиции, поэтому вскоре он перешёл на позиции Фарадея:

"Когда мы наблюдаем, что одно тело действует на другое на расстоянии, то, прежде чем принять, что это действие прямое и непосредственное, мы обыкновенно исследуем, нет ли между телами какой-либо материальной связи… Кому свойства воздуха не знакомы, тому передача силы посредством этой невидимой среды будет казаться столь же непонятной, как и всякий другой пример действия на расстоянии… Не следует смотреть на эти [силовые] линии как на чисто математические абстракции. Это направления, в которых среда испытывает напряжение, подобное натяжению верёвки…"

Майкл Фарадей

фффффПеред Максвеллом встал вопрос построения математической теории, которая включала бы как фарадеевские представления, так и правильные результаты, полученные приверженцами дальнодействия. Максвелл решил воспользоваться методом аналогий, успешно применённым Уильямом Томсоном, который ещё в 1842 году подметил аналогию между электрическим взаимодействием и процессами теплопередачи в твёрдом теле. Это позволило ему применить к электричеству результаты, полученные для теплоты, и дать первое математическое обоснование процессам передачи электрического действия посредством некоторой среды. фффффВ 1846 году Томсон изучил аналогию между электричеством и упругостью. Максвелл воспользовался другой аналогией: он разработал гидродинамическую модель силовых линий, уподобив их трубкам с идеальной несжимаемой жидкостью (векторы магнитной и электрической индукций аналогичны вектору скорости жидкости), и впервые выразил закономерности полевой картины Фарадея на математическом языке (дифференциальные уравнения). По образному выражению Роберта Милликена, Максвелл «облёк плебейски обнажённое тело фарадеевских представлений в аристократические одежды математики». Однако вскрыть связь между покоящимися зарядами и «движущимся электричеством» (токами), отсутствие которой, видимо, было одной из основных его мотиваций в работе, ему в то время не удалось.

фффффВ сентябре 1855 года Максвелл посетил конгресс Британской ассоциации (British Science Association) в Глазго, заехав по пути навестить больного отца, а по возвращении в Кембридж с успехом сдал экзамен на право стать членом совета колледжа (это подразумевало обет безбрачия). В новом семестре Максвелл начал читать лекции по гидростатике и оптике. Зимой 1856 года он вернулся в Шотландию, перевёз отца в Эдинбург и в феврале вернулся в Англию. В это время он узнал о появлении вакансии профессора натуральной философии Маришаль-колледжа (Marischal College) в Абердине и решил попробовать получить это место, надеясь быть поближе к отцу и не видя ясных перспектив в Кембридже. В марте Максвелл отвёз отца обратно в Гленлэр, где тому, казалось, стало лучше, однако 2 апреля отец скончался. В конце апреля Максвелл получил назначение на пост профессора в Абердине и, проведя лето в родовом имении, в октябре прибыл на новое место работы.

Работы в области электромагнетизма

фффффПод влиянием идей Фарадея и Томсона Максвелл пришёл к выводу, что магнетизм имеет вихревую природу, а электрический ток — поступательную. Для наглядного описания электромагнитных эффектов он создал новую, чисто механическую модель, согласно которой вращающиеся «молекулярные вихри» производят магнитное поле, тогда как мельчайшие передаточные «холостые колёса» обеспечивают вращение вихрей в одну сторону. Поступательное движение этих передаточных колёс («частичек электричества», по терминологии Максвелла) обеспечивает формирование электрического тока. При этом магнитное поле, направленное вдоль оси вращения вихрей, оказывается перпендикулярным направлению тока, что нашло выражение в обоснованном Максвеллом «правиле буравчика».
фффффВ рамках данной механической модели удалось не только дать адекватную наглядную иллюстрацию явления электромагнитной индукции и вихревого характера поля, порождаемого током, но и ввести эффект, симметричный фарадеевскому: изменения электрического поля (так называемый ток смещения, создаваемый сдвигом передаточных колёс, или связанных молекулярных зарядов, под действием поля) должны приводить к возникновению магнитного поля. Ток смещения непосредственно привёл к уравнению непрерывности для электрического заряда, то есть к представлению о незамкнутых токах (ранее все токи считались замкнутыми). Соображения симметрии уравнений при этом, видимо, не играли никакой роли. Знаменитый физик Дж. Дж. Томсон назвал открытие тока смещения «величайшим вкладом Максвелла в физику». Эти результаты были изложены в статье «О физических силовых линиях» (On physical lines of force), опубликованной в нескольких частях в 1861—1862 годах.
фффффВ той же статье Максвелл, перейдя к рассмотрению распространения возмущений в своей модели, подметил сходство свойств своей вихревой среды и светоносного эфира Френеля. Это нашло выражение в практическом совпадении скорости распространения возмущений (отношения электромагнитной и электростатической единиц электричества, определённой Вебером и Рудольфом Кольраушем) и скорости света, измеренной Ипполитом Физо. Таким образом, Максвелл сделал решительный шаг к построению электромагнитной теории света:

"Мы едва ли можем отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений."


фффффВпрочем, эта среда (эфир) и её свойства не представляли первоочередного интереса для Максвелла, хотя он, безусловно, разделял представление об электромагнетизме как о результате применения законов механики к эфиру. Как отмечал по этому поводу Анри Пуанкаре, «Максвелл не даёт механического объяснения электричества и магнетизма; он ограничивается тем, что доказывает возможность такого объяснения».
фффффВ 1864 году вышла следующая статья Максвелла «Динамическая теория электромагнитного поля» , в которой была дана более развёрнутая формулировка его теории (здесь впервые появился сам термин «электромагнитное поле»). При этом он отбросил грубую механическую модель (подобные представления, по признанию учёного, вводились исключительно «как иллюстративные, а не как объясняющие»), оставив чисто математическую формулировку уравнений поля (уравнения Максвелла), которое впервые трактовалось как физически реальная система с определённой энергией. По-видимому, это связано с первым осознанием реальности запаздывающего взаимодействия зарядов (и запаздывающего взаимодействия вообще), обсуждаемого Максвеллом. В этой же работе он фактически выдвинул гипотезу существования электромагнитных волн, хотя, следуя Фарадею, писал лишь о магнитных волнах (электромагнитные волны в полном смысле этого слова появились в статье 1868 года).
фффффСкорость этих поперечных волн, согласно его уравнениям, равна скорости света, и таким образом окончательно сложилось представление об электромагнитной природе света. Более того, в этой же работе Максвелл применил свою теорию к проблеме распространения света в кристаллах, диэлектрическая или магнитная проницаемости которых зависят от направления, и в металлах, получив волновое уравнение с учётом проводимости материала.
Уравнения Максвелла
фффффУравне́ния Ма́ксвелласистема уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.
фффффВместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму (одним из ярчайших примеров здесь может служить специальная теория относительности).
фффффУравнения Максвелла представляют собой в векторной записи систему из четырёх уравнений, сводящуюся в компонентном представлении к восьми (два векторных уравнения содержат по три компоненты каждое плюс два скалярных[~ 2]) линейным дифференциальным уравнениям в частных производных первого порядка для 12 компонент четырёх векторных и псевдовекторных функций:D,E,H,B
фффффЗапись большинства уравнений в физике не зависит от выбора системы единиц. Однако в электродинамике это не так. В зависимости от выбора системы единиц в уравнениях Максвелла возникают различные коэффициенты (константы). Международная система единиц (СИ) является стандартом в технике и преподавании, однако споры среди физиков о её достоинствах и недостатках по сравнению с конкурирующей системой единиц СГС не утихают; здесь и всюду далее под СГС подразумевается исключительно симметричная гауссова система СГС.

фффффПреимущество системы СГС в электродинамике состоит в том, что все поля в ней имеют одну размерность, а уравнения, по мнению многих учёных, записываются проще и естественней. Поэтому СГС продолжает применяться в научных публикациях по электродинамике и в преподавании теоретической физики, например, в курсе теоретической физики Ландау и Лифшица. Однако для практических применений вводимые в СГС единицы измерений, многие из которых не именованы и неоднозначны, часто неудобны. Система СИ стандартизована и лучше самосогласованна, на этой системе построена вся современная метрология.
фффффКроме того, система СИ обычно используется в курсах общей физики. В связи с этим все соотношения, если они по-разному записываются в системах СИ и СГС, далее приводятся в двух вариантах.
фффффИногда (например, в некоторых разделах «Фейнмановских лекций по физике», а также в современной квантовой теории поля) применяется система единиц, в которой скорость света, электрическая и магнитная постоянные принимаются за единицу: c=ε0=μ0=1 . В такой системе уравнения Максвелла записываются вообще без коэффициентов, все поля имеют единую размерность, а все потенциалы — свою единую.
фффффТакая система особенно удобна в ковариантной четырёхмерной формулировке законов электродинамики через 4-потенциал и 4-тензор электромагнитного поля.

Влияние на науку

Квантовая механика и теория относительности.

фффффТео́рия относи́тельности (релятивистская теория), описывает движение тел и пространственно-временны́е отношения при произвольных скоростях движения, в том числе близких к скорости света. Термин «теория относительности» введён М. Планком в 1906 г.
фффффРазличают специальную теорию относительности (СТО), или частную теорию относительности, описывающую явления в той области пространства, где полями тяготения можно пренебречь, и общую теорию относительности (ОТО), которая учитывает гравитационные поля. СТО сформулирована А. Эйнштейном в 1905 г. при объяснении неудачных попыток обнаружить движение Земли относительно мирового эфира, колебания которого, как было принято думать, проявляют себя как электромагнитные волны. Концепция светоносного эфира, выдвинутая в 17 в. Р. Декартом, получила новый импульс в 19 в. в результате создания Дж. Максвеллом электромагнитной теории, в которой были получены уравнения, описывающие электромагнитные волны.
фффффОднако уравнения Максвелла были несовместимы с принципом относительности Галилея, и хотя преобразования Лоренца, заменяющие преобразования Галилея в современной теории, и были известны до работы Эйнштейна, многие физики, в том числе Х. А. Лоренц и А. Пуанкаре, были склонны объяснять ненаблюдаемость эфира особой выделенностью системы координат, в которой эфир покоится.
фффффЭйнштейн предложил отказаться от эфира, признав теорию Максвелла самодостаточной для объяснения природы света и выдвинув постулат независимости скорости света от движения источника. Это потребовало отказа от абсолютности времени и привело к представлению о пространстве-времени как о едином многообразии (Г. Минковский). СТО основана на принципе относительности и независимости физических явлений от выбора инерциальной системы отсчёта (ИСО).

Титульный лист «Трактата»

Открытка Максвелла Питеру Тэту, подписанная dp/dt

Классическая электродинамика

фффффИдея электромагнетизма Максвелла стала неким обобщением главных законов электрических и магнитных процессов, так как не только комплексно объяснила уже известные на тот момент экспериментальные факты, но и предсказала новые необычные явления. Так было предсказано возникновение электромагнитных постоянных волн в виде электрического поля, которое распространяется в пространстве с конечной скоростью. В дальнейшем ученые продемонстрировали, что общая скорость распределения электромагнитного поля в вакууме прямо пропорциональна аналогичному показателю света.
фффффЭкспериментальное подтверждение существования электрических и магнитных волн было осуществлено в 1887 г. немецким физиком Г. Герце, который, используя в своей работе мощную лабораторную установку, впервые получил и зарегистрировал электромагнитную волну.

фффффЗамечание: Герцем были проведены опыты на основе уравнений Максвелла, которые показали, что указанные процессы в электродинамике обладают всеми существующими свойствами света: преломлением, отражением, интерференцией, поляризацией, дифракцией, следовательно, распространяются со скоростью световых явлений. Эти выводы стали официальным подтверждением того факта, что свет также является элементом электромагнитной волны. В истории общего развития электромагнетизма стоит отметить одну значимую деталь: впервые в этой сфере научные эксперименты предшествовали техническим применениям.
фффффПример: Если паровую машину построили еще задолго до создания закона тепловых процессов, то смоделировать радиоприемник или электродвигатель оказалось реальным только после изучения принципов электродинамики. Многочисленные применения на практике электромагнитных явлений в значительной мере способствовали значимому преобразованию сферы интеллектуальной деятельности человека и развитию цивилизации.

Признание и награды

Основные труды

Значение его работ для современного

понимания физики

фффффХотя вклад Максвелла в развитие физики (особенно электродинамики) не был оценён должным образом при его жизни, в последующие годы росло осознание истинного места его трудов в истории науки. Многие крупные учёные отмечали это в своих оценках. Так, Макс Планк обратил внимание на универсализм Максвелла как учёного:
Великие мысли Максвелла не были случайностью: они, естественно, вытекали из богатства его гения; лучше всего это доказывается тем обстоятельством, что он был первооткрывателем в самых разнообразных отраслях физики, и во всех её разделах он был знатоком и учителем.
фффффОднако, по мнению Планка, именно работы Максвелла по электромагнетизму являются вершиной его творчества:
…в учении об электричестве его гений предстаёт перед нами в своём полном величии. Именно в этой области после многолетней тихой исследовательской работы на долю Максвелла выпал такой успех, который мы должны причислить к наиболее удивительным деяниям человеческого духа. Ему удалось выманить у природы в результате одного лишь чистого мышления такие тайны, которые лишь спустя целое поколение и лишь частично удалось показать в остроумных и трудоёмких опытах.
фффффКак отметил Рудольф Пайерлс, работы Максвелла по теории электромагнитного поля способствовали принятию идеи о поле как таковом, которая нашла широкое применение в физике XX века:
Хорошо, что после усвоения идей Максвелла физики привыкли к восприятию в качестве основного физического факта утверждения, что существует некоторое поле определённого рода в определённой точке пространства, так как уже давно нельзя было ограничиваться электромагнитным полем. Много других полей появилось в физике и, конечно, мы не желаем и не ожидаем объяснения их через модели разного типа.
фффффНа важность концепции поля в творчестве Максвелла указывали в своей популярной книге «Эволюция физики» Альберт Эйнштейн и Леопольд Инфельд:
Формулировка этих уравнений [то есть уравнений Максвелла] является самым важным событием со времени Ньютона не только вследствие ценности их содержания, но и потому, что они дают образец нового типа законов. Характерную особенность уравнений Максвелла, которая проявляется и во всех других уравнениях современной физики, можно выразить в одном предложении: уравнения Максвелла суть законы, выражающие структуру поля… Теоретическое открытие электромагнитной волны, распространяющейся со скоростью света, является одним из величайших достижений в истории науки.

Альберт Эйнштейн
фффффЭйнштейн также признал, что «теория относительности обязана своим возникновением уравнениям Максвелла для электромагнитного поля». Стоит также отметить, что теория Максвелла была первой калибровочно-инвариантной теорией. Она дала толчок дальнейшему развитию принципа калибровочной симметрии, который лежит в основе современной Стандартной модели. Наконец, заслуживают упоминания многочисленные практические приложения электродинамики Максвелла, дополненной концепцией максвелловского тензора напряжений . Это расчёт и создание промышленных установок, и использование радиоволн, и современное численное моделирование электромагнитного поля в сложных системах.

Тест

Проверьте свои знания о Джеймсе Клерке Максвелле!

фффффДжеймс Клерк Максвелл — выдающийся физик и математик, чьи работы заложили основы классической электродинамики и термодинамики. Его уравнения, описывающие взаимодействие электричества и магнетизма, стали ключевыми для понимания света как электромагнитной волны. Если вы хотите проверить свои знания о жизни, научных достижениях и наследии Максвелла, пройдите наш тест!

Что вас ждет в тесте:
• Вопросы о биографии и карьере Максвелла.
• Задания на понимание его научных открытий.
• Вопросы о влиянии его работ на современную физику.

Не упустите возможность узнать больше о великом ученом и оценить свои знания!

This site was made on Tilda — a website builder that helps to create a website without any code
Create a website